Microphysics of the Tokamak Density Limits: Recent Progress

Radiative Condensation → Strong Particle Flux and Scalings (especially 'Power')

P.H. Diamond

U.C. San Diego

菊地祭, 2025, Fukuoka

Principal Collaborators:

Rongjie Hong, Ting Long, Rameswar Singh

Ackn Collaboration of:

DIII-D, HL-2A, J-TEXT programs

Why Study Density Limits?

- Interested in max density both line averaged and edge
- Constraint on operating space

Lawson #
$$\sim n T \tau_E$$

- Fusion power gain $\sim n^2$
- Emerging attractive feed back loop for burning plasma

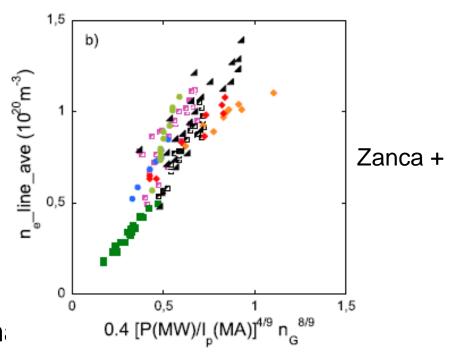
$$P_{\text{fusion}} \sim n^2$$

$$n_{max} \sim P^{\alpha}$$
 (0 < α < 1, but which P in BP?)

Setting the Stage: V'_E as Ubiquitous Edge Order Parameter

- Density limits as "back-transition" phenomena; V_E' physics crucial
- L-DL mechanism:
 - Shear layer degradation
 - Strong turbulence <u>spreading</u> → Blob emission
- α is key parameter, but not only

 $\alpha \equiv adiabaticity$


- Scalings of L-DL emerge from zonal flow physics
 - I_p scaling → neo dielectric
 - P scaling → Reynolds stress, radial force balance
- Novel hysteresis evident in L-DL dynamics
- Back Transition is in state of edge plasma.

Power Scaling and <u>Physics</u> of L-mode Density Limit (Singh, P.D. PPCF 2022)

- Power Scaling is an old story, keeps returning
- Zanca+ (2019) fits $\to \bar{n} \sim P^{1/4}$

- Giacomin+: Simulations recover power scaling
- Observe: $Q_i|_{\text{bndry}}$ will drive shear layer \rightarrow LH mech
- So: $P_{\text{scaling}} \leftrightarrow \text{shear layer physics: a natural connection}$
- Q_i , Q_e at boundary as physical quantities

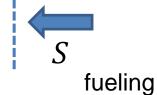
Expanded Kim-Diamond Model

- KD '03 useful model of L→H dynamics (0D)
- See also Miki, P.D. et al '12, et. seq. (1D)
- Evolve ε , V_{ZF} , n, T_i , V'_E

$$\leftarrow \rightarrow$$

- Treats mean and zonal shearing
- Separates density and temperature contributions to P_i
- Heat and particle sources Q, S
- N.B. i) ZeroD → interpret as edge layer
 - ii) Does not determine profiles
 - iii) Coeffs for ITG

$$\frac{\partial \mathcal{E}}{\partial t} = \frac{a_1 \gamma(\mathcal{N}, \mathcal{T}) \mathcal{E}}{1 + a_3 \mathcal{V}^2} - a_2 \mathcal{E}^2 - \frac{a_4 v_z^2 \mathcal{E}}{1 + b_2 \mathcal{V}^2}$$
 Fluctuation Intensity


$$\frac{\partial v_z^2}{\partial t} = \frac{b_1 \mathcal{E} v_z^2}{1 + b_2 \mathcal{V}^2} - b_3 n v_z^2 + b_4 \mathcal{E}^2$$
 Zonal Intensity

$$\frac{\partial \mathcal{T}}{\partial t} = -c_1 \frac{\mathcal{E}\mathcal{T}}{1 + c_2 \mathcal{V}^2} - c_3 \mathcal{T} + Q \left\{ \begin{array}{c} T_i \\ Q \rightarrow \text{power} \end{array} \right.$$

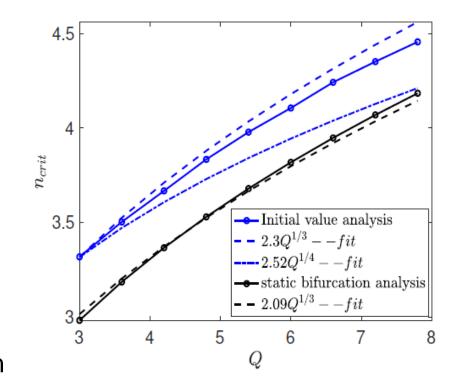
$$\frac{\partial n}{\partial t} = -d_1 \frac{\mathcal{E}n}{1 + d_2 \mathcal{V}^2} - d_3 n + S$$
 $\begin{cases} n \\ S \rightarrow \text{ fueling} \end{cases}$

$$V_E' = -\rho_i v_{thi} L_n^{-1} (L_n^{-1} + L_T^{-1})$$
 Shear (mean)

$$\mathcal{V} \equiv \frac{V_E'a}{\rho^*v_{thi}} = -\frac{n_0}{n}\mathcal{N}\left(\frac{n_0}{n}\mathcal{N} + \frac{T_0}{T}\mathcal{T}\right)$$

edge layer

heat flux


Power Scaling: LDL

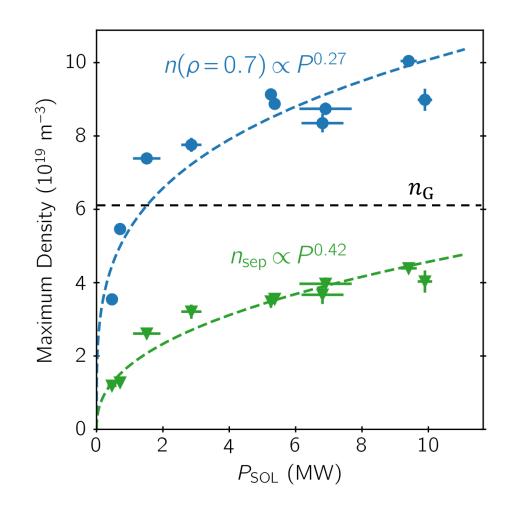
- $n_{\rm crit} \sim Q^{1/3}$
- Distinct from Zanca, but close (model)
- In K-D, with neoclassical screening $n_{crit} \sim I_p \rightarrow I_P^2$
- Physics is $\gamma(Q)$ vs ZF damping
- Shear layer drive underpins power scaling

Physics: $Q_i \rightarrow$ Turbulence \rightarrow Reynolds Stress \rightarrow ZF shear Increased ZF damping \rightarrow Confinement degradation

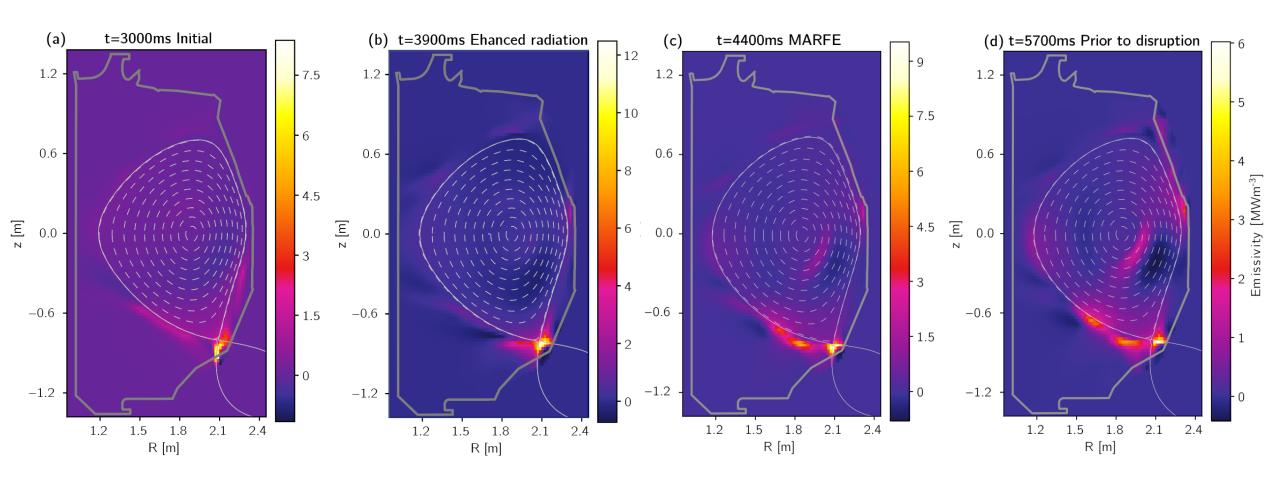
NB: Unavoidable model dependence in scalings

- Novel hysteresis predicted
- Torque dependence !?

Reality intrudes:


Recent L-DL Experiments in DIII-D with NT

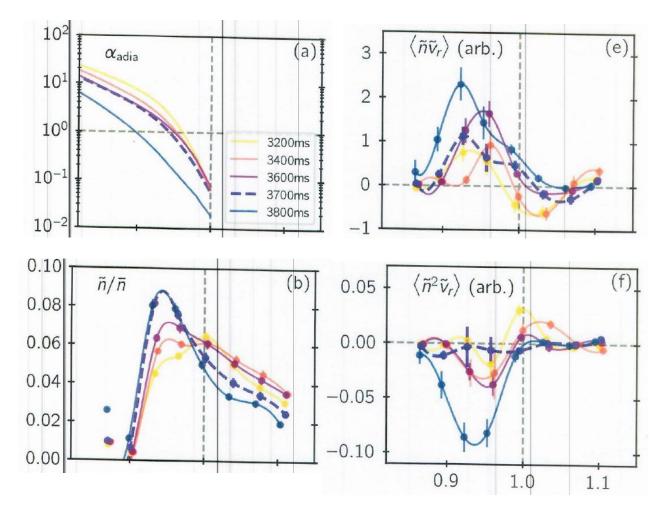
- R. Hong, P.D., O. Sauter + → submitted to N.F. 2025
- O. Sauter, R. Hong $+ \rightarrow$ N.F. 2025
- N.B.: NT suppresses L→H transition, even at high power
 - Extends dynamic range of P for L-DL studies


Punch Line: $\bar{n} \sim 1.8 \, n_G$ for $P \sim 13 \, MW$ usually 'soft' termination

Power Scalings

- <u>Distinct</u> power scalings of sep. and core density, over wide range
- No unique "Density Limit"
- $n_{sep} < n_G$ but steadily increasing with power
- Most cases don't terminate in disruption
- Radical departure from conventional wisdom

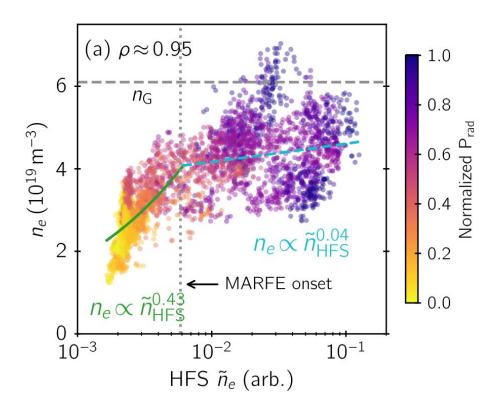
Evolution of Radiation and MARFE



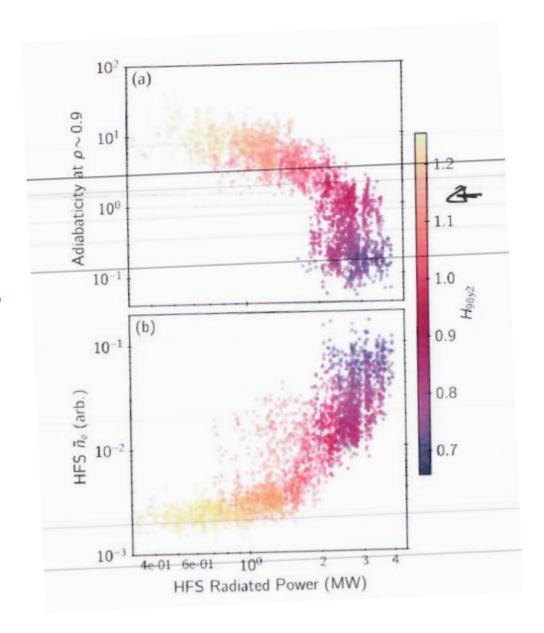
- Edge density limit linked to radiation
- Disruption follows strong MARFE

α , Transport and Spreading

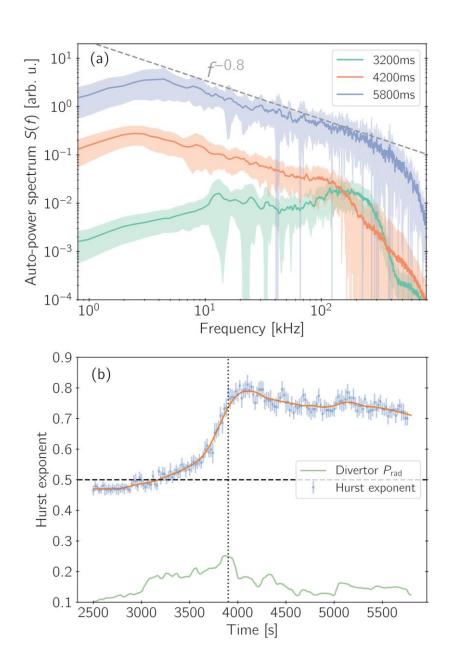
- With strong radiation:
 - $-\alpha$ drops
 - $-\tilde{n}/n$ increases
 - $-\langle \tilde{v}_r \tilde{n} \rangle$ increases
 - spreading flux $\langle \tilde{v}_r \tilde{n}^2 \rangle$ increases, spreading inward


N.B.: From BES, velocimetry

Suggests DL as Radiation ←→ Condensation ←→ Turbulent Transport Synergy


Fluctuations and Density

- Edge density rises with \tilde{n}_{HFS} pre-MARFE
- Post MARFE edge density \sim "clamps", manifesting a 'limit', as \tilde{n}_{HFS} increases.
- Broad range edge n_e , some exceeding n_G .
- Larger fluctuations and density saturation follow radiation onset.


α and turbulence level versus radiated power

Rise in fluctuations tracks drop in α < 1 as HFS P_{rad} increases

Core Fluctuations

- Recall ~ independent core density limit
 - as n rises, $S(f) \sim f^{-0.8}$
 - $-P_{rad}$ Hurst exponent \rightarrow 0.7
 - Core DL ← → Avalanching ?!
- Also:
 - PDF(\tilde{n}) tails fatten
 - Kurtosis rises

What have we learned?

- No single "DENSITY LIMIT", but rather an edge and core n saturation, with different mechanisms
- Power dependence unambiguous
- Soft limit → most plasmas don't disrupt
- Suggests evolution:

Radiative condensation MARFE \rightarrow edge cooling $\rightarrow \alpha < 1$ hydro-regime \rightarrow enhanced transport with shear layer collapse \rightarrow DL via particle outflow

i.e. Radiative cooling releases strong particle transport → 'density clamp'

A Bit More Theory

- A Work in Progress

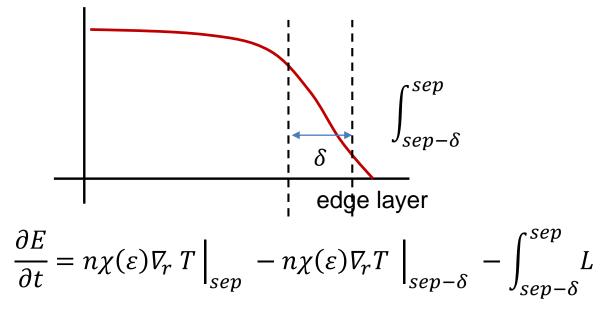
What is Needed?

- Model of radiative condensation/MARFE in <u>turbulent</u> medium
- Radiative condensation: Thermal (cooling) instability s/t $\omega < k_{\parallel} c_{s}$ so $\delta P = 0$

$$\gamma = \frac{2}{5n} \left(\frac{2L}{T} - \frac{\partial L}{\partial T} \right) - \chi_{\perp} k_{\perp}^2 - \chi_{\parallel} k_{\parallel}^2$$

• c.f. G. Field .. 1965 → Drake 1987 (linear theory in cylinder)

R.C. plus turbulence intensively studied in ISM cf Max Gronke+ MNRAS 2021


Strategy

- Incorporate radiative cooling into reduced model
- Defining competition for power scaling will be Heat Flux vs Turbulence + Cooling
 - $-\alpha$ sets branching ratio
 - Coupling: cooling \uparrow → α ↓ → transport \uparrow Ratio [R.C. / Transport] of interest
- Minimal Model:
 - Fluctuation energy
 - Zonal energy
 - T_e → high n, $T_e \sim T_i$; $D \sim \chi_e$ for electrostatics

Proto-Model

• Temperature Equation – Mean field, $k_{\parallel} = 0$

$$n \frac{\partial T}{\partial t} = \nabla_r \ n \chi(\varepsilon) \nabla_r T - L \longrightarrow \begin{array}{c} \text{radiative loss } (L > 0) \\ L = L(n,T) \approx n^2 \Lambda \end{array}$$
 turbulent transport $\chi(\varepsilon)$ - fluctuation dependent

So

Proto-Model, cont'd

• But: $-n \chi(\varepsilon) \nabla_r T|_{sep-\delta} = Q \rightarrow \text{heat flux from core}$

So for edge layer:

$$\frac{\partial E}{\partial t} = Q_{core} - (\delta)L + n \chi(\epsilon)\nabla_r T \Big|_{sep}$$
 radiative losses

and can simplify to:

$$\frac{\partial T}{\partial t} = -\frac{\chi(\varepsilon)T}{\Delta^2} + q - \frac{L(n,T)}{n}$$

becomes a simple mean field temperature equation

Key Ratio

- Physics of Power Scaling of Great Interest
- From T eqn, <u>radiation</u> and <u>transport</u> compete for q, so

$$\frac{L/n}{\chi(\varepsilon)T/\Delta^2} \sim \frac{\gamma_{RC}}{\chi(\varepsilon)/\Delta^2} \sim D_{a,R}(Q,n,...)$$

 $D_a \sim \tau_{turb}/\tau_{react} \rightarrow \text{Damkohler # from combustion}$

Radiative Damkohler # (after Gronke)

 $D_a \gg 1 \rightarrow$ reaction time short \rightarrow flame sheets

 $D_a \ll 1 \rightarrow \text{mixing time short} \rightarrow \text{pre-mixed flame}$

Key Ratio, cont'd

- Now have radiative Damkohler number
- $D_{a,R} \sim \tau_{transp} / \tau_{rad}$
- $D_{a,R} \ll 1 \rightarrow \text{strong turbulent transport thru layer. } P \text{ scaling by transport physics}$
 - $D_{a,R} \gg 1 \rightarrow \text{radiation dominated. } P \text{ scaling by radiation}$
- Expect: $D_{a,R}$ first
 - rises to \gg 1 as R.C. grows
 - drops to \leq 1 as edge plasma cools
- \therefore time history of considerable interest \rightarrow drop in $D_{a,R}$ should correspond to 'density clamp'.

Minimal Model → ala' Singh + P.D.

$$\frac{\partial T}{\partial t} = -\frac{\chi \varepsilon T}{\Delta^2} + q - \frac{L(n,T)}{n} \rightarrow \text{temp}$$

$$\frac{\partial \varepsilon}{\partial t} = a_1 \gamma(n, T)\varepsilon - a_4 V_z^2 \varepsilon f(\alpha) - a_2 \varepsilon^2 \quad \Rightarrow \text{fluctuation energy}$$

$$\frac{\partial V_z^2}{\partial t} = a_4 V_z^2 \varepsilon f(\alpha) - b_3 n V_z^2 \quad \Rightarrow \text{ zonal flow}$$

 $\rightarrow f(\alpha) \equiv$ adiabaticity "switch" - T evolves

$$\alpha \sim k_{\parallel}^2 \ v_{th}^2 / \ \omega v \ \sim T^2$$
 accounts for Z.F. decay, production drops

$$f(\alpha) \sim 1, \alpha > 1$$

 $f(\alpha) \ll 1, \alpha \ll 1$

Next Steps

- Exercise Model
- 1D version → cooling fronts!?
 - → cooling + transport fronts ?!
- Profile structure, magnetic geometry?
 - N.B. $\chi_{\parallel} k_{\parallel}^2 \sim (D_T \chi_{\parallel})^{1/2} k_{\theta} / L_s$ higher m modes damped by conduction + turbulence
- Can radiative condensation couple to turbulence dynamics directly? How?

Speculations

- Soft limit defined by $\gamma_{rad}(n)$ sufficient to induce $\alpha < 1$?!
 - → n_{crit} for strong transport → soft DL ?!
- Burning Plasma?

$$\bar{n} \sim P^{\alpha}$$
, but $P = P_{thermal}$

- : density limit likely linked to alpha channelling efficiency
- Control edge Rad. Condens. using stochastic layer?

Partial Conclusion

"Causality" counter-intuitive

Radiation/MARFE → cooling → strong transport

$$\alpha > 1 \rightarrow \alpha < 1$$

Opposite conventional wisdom!

- Non-disruptive termination
- Two channels for power scaling, strongly coupled. $D_{a,R}$ is useful \rightarrow experimental analysis

$$D_{a,R} \sim \gamma_{rad} / \frac{\chi(\varepsilon)}{\Delta^2}$$

Model extended to encompass radiative condensation

From then to now of DL

- Greenwald (1988) scaling \rightarrow Wrong \rightarrow Power Scaling, Multiple Limits $\bar{n} \sim I_p/\pi a^2$
- Sudo (1990) Scaling (stellarator) \rightarrow mainstream, albeit incomplete \rightarrow G + S unification $\bar{n} \sim P^{1/2}$
- DL as MHD + Disruption phenomenon → frequently, even usually, not
 Rebut, Gates, White (revision needed!)
- DL as a 'Back-Transition' → from heresy to convention
- Radiation triggers MHD → Rad. triggers transport...
- Better Density 'Saturation' than 'Limit'!

Thank You!